Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631714

RESUMO

BACKGROUND: Lymphocytic choriomeningitis virus (LCMV) belongs to the Arenavirus family known for inducing strong cytotoxic T-cell responses in both mice and humans. LCMV has been engineered for the development of cancer immunotherapies, currently undergoing evaluation in phase I/II clinical trials. Initial findings have demonstrated safety and an exceptional ability to activate and expand tumor-specific T lymphocytes. Combination strategies to maximize the antitumor effectiveness of LCMV-based immunotherapies are being explored. METHODS: We assessed the antitumor therapeutic effects of intratumoral administration of polyinosinic:polycytidylic acid (poly(I:C)) and systemic vaccination using an LCMV-vector expressing non-oncogenic versions of the E6 and E7 antigens of human papillomavirus 16 (artLCMV-E7E6) in a bilateral model engrafting TC-1/A9 cells. This cell line, derived from the parental TC-1, exhibits low MHC class I expression and is highly immune-resistant. The mechanisms underlying the combination's efficacy were investigated through bulk RNA-seq, flow cytometry analyses of the tumor microenvironment, selective depletions using antibodies and clodronate liposomes, Batf3 deficient mice, and in vivo bioluminescence experiments. Finally, we assessed the antitumor effectiveness of the combination of artLCMV-E7E6 with BO-112, a GMP-grade poly(I:C) formulated in polyethyleneimine, currently under evaluation in clinical trials. RESULTS: Intratumoral injection of poly(I:C) enhanced the antitumor efficacy of artLCMV-E7E6 in both injected and non-injected tumor lesions. The combined treatment resulted in a significant delay in tumor growth and often complete eradication of several tumor lesions, leading to significantly improved survival compared with monotherapies. While intratumoral administration of poly(I:C) did not impact LCMV vector biodistribution or transgene expression, it significantly modified leucocyte infiltrates within the tumor microenvironment and amplified systemic efficacy through proinflammatory cytokines/chemokines such as CCL3, CCL5, CXCL10, TNF, IFNα, and IL12p70. Upregulation of MHC on tumor cells and a reconfiguration of the gene expression programs related to tumor vasculature, leucocyte migration, and the activation profile of tumor-infiltrating CD8+ T lymphocytes were observed. Indeed, the antitumor effect relied on the functions of CD8+ T lymphocytes and macrophages. The synergistic efficacy of the combination was further confirmed when BO-112 was included. CONCLUSION: Intratumoral injection of poly(I:C) sensitizes MHClow tumors to the antitumor effects of artLCMV-E7E6, resulting in a potent therapeutic synergy.


Assuntos
Vírus da Coriomeningite Linfocítica , Neoplasias , Poli I-C , Animais , Humanos , Camundongos , Injeções Intralesionais , Distribuição Tecidual , Imunoterapia/métodos , Adjuvantes Imunológicos , Microambiente Tumoral
2.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918917

RESUMO

BACKGROUND: Peritoneal carcinomatosis is an advanced stage of cancer in which the disease has spread to the peritoneal cavity. In order to restore antitumor immunity subverted by tumor cells in this location, we evaluated intraperitoneal administrations of modified vaccinia virus Ankara (MVA) engineered to express single-chain interleukin 12 (scIL-12) to increase antitumor immune responses. METHODS: MVA encoding scIL-12 (MVA.scIL-12) was evaluated against peritoneal carcinomatosis models based on intraperitoneal engraftment of tumor cells. CD8-mediated immune responses, elucidated antitumor efficacy, and safety were evaluated following intravenous, intratumoral, or intraperitoneal administration of the viral vector. The immune response was measured by ELISpot (enzyme-linked immunosorbent spot), RNA sequencing, flow cytometry, intravital microscopy, and depletion of lymphocyte subsets with monoclonal antibodies. Safety was assessed by body-weight follow-up and blood testing. Tissue tropism on intravenous or intraperitoneal administration was assessed by bioluminescence analysis using a reporter MVA encoding luciferase. RESULTS: Intraperitoneal or locoregional administration, but not other routes of administration, resulted in a potent immune response characterized by increased levels of tumor-specific CD8+ T lymphocytes with the ability to produce both interferon-γ and tumor necrosis factor-α. The antitumor immune response was detectable not only in the peritoneal cavity but also systemically. As a result of intraperitoneal treatment, a single administration of MVA.scIL-12 encoding scIL-12 completely eradicated MC38 tumors implanted in the peritoneal cavity and also protected cured mice from subsequent subcutaneous rechallenges. Bioluminescence imaging using an MVA encoding luciferase revealed that intraperitoneal administration targets transgene to the omentum. The omentum is considered a key tissue in immune protection of the peritoneal cavity. The safety profile of intraperitoneal administration was also better than that following intravenous administration since no weight loss or hematological toxicity was observed when the vector was locally delivered into the peritoneal cavity. CONCLUSION: Intraperitoneal administration of MVA vectors encoding scIL-12 targets the omentum, which is the tissue where peritoneal carcinomatosis usually begins. MVA.scIL-12 induces a potent tumor-specific immune response that often leads to the eradication of experimental tumors disseminated to the peritoneal cavity.


Assuntos
Interleucina-12 , Neoplasias Peritoneais , Animais , Camundongos , Interleucina-12/genética , Omento , Vírus Vaccinia/genética , Luciferases
3.
Mol Ther Nucleic Acids ; 33: 599-616, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37637207

RESUMO

IL-12 is a potent cytokine for cancer immunotherapy. However, its systemic delivery as a recombinant protein has shown unacceptable toxicity in the clinic. Currently, the intratumoral injection of IL-12-encoding mRNA or DNA to avoid such side effects is being evaluated in clinical trials. In this study, we aimed to improve this strategy by further favoring IL-12 tethering to the tumor. We generated in vitro transcribed mRNAs encoding murine single-chain IL-12 fused to diabodies binding to CSF1R and/or PD-L1. These targeted molecules are expressed in the tumor microenvironment, especially on myeloid cells. The binding capacity of chimeric constructs and the bioactivity of IL-12 were demonstrated in vitro and in vivo. Doses as low as 0.5 µg IL-12-encoding mRNA achieved potent antitumor effects in subcutaneously injected B16-OVA and MC38 tumors. Treatment delivery was associated with increases in IL-12p70 and IFN-γ levels in circulation. Fusion of IL-12 to the diabodies exerted comparable efficacy against bilateral tumor models. However, it achieved tethering to myeloid cells infiltrating the tumor, resulting in nearly undetectable systemic levels of IL-12 and IFN-γ. Overall, tethering IL-12 to intratumoral myeloid cells in the mRNA-transferred tumors achieves similar efficacy while reducing the dangerous systemic bioavailability of IL-12.

4.
Oncoimmunology ; 12(1): 2147317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531687

RESUMO

Previous studies have shown that local delivery of tumor antigen-specific CD8+ T lymphocytes engineered to transiently express single-chain IL-12 mRNA is highly efficacious. Peritoneal dissemination of cancer is a frequent and often fatal patient condition usually diagnosed when the tumor burden is too large and hence uncontrollable with current treatment options. In this study, we have modeled intracavitary adoptive T cell therapy with OVA-specific OT-I T cells electroporated with IL-12 mRNA to treat B16-OVA and PANC02-OVA tumor spread in the peritoneal cavity. Tumor localization in the omentum and the effects of local T-cell encounter with the tumor antigens were monitored, the gene expression profile evaluated, and the phenotypic reprogramming of several immune subsets was characterized. Intraperitoneal administration of T cells promoted homing to the omentum more effectively than intravenous administration. Transient IL-12 expression was responsible for a favorable reprogramming of the tumor immune microenvironment, longer persistence of transferred T lymphocytes in vivo, and the development of immunity to endogenous antigens following primary tumor eradication. The efficacy of the strategy was at least in part recapitulated with the adoptive transfer of lower affinity transgenic TCR-bearing PMEL-1 T lymphocytes to treat the aggressive intraperitoneally disseminated B16-F10 tumor. Locoregional adoptive transfer of transiently IL-12-armored T cells appears to offer promising therapeutic advantages in terms of anti-tumor efficacy to treat peritoneal carcinomatosis.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Peritoneais , Camundongos , Animais , Interleucina-12/genética , RNA Mensageiro/genética , Neoplasias Peritoneais/terapia , Transferência Adotiva , Antígenos de Neoplasias/genética , Modelos Animais de Doenças , Microambiente Tumoral
5.
Cancer Immunol Res ; 11(2): 184-198, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478221

RESUMO

IL12-based local gene therapy of cancer constitutes an active area of clinical research using plasmids, mRNAs, and viral vectors. To improve antitumor effects, we have experimentally tested the combination of mRNA constructs encoding IL12 and IL18. Moreover, we have used a form of IL18 [decoy-resistant IL18 (DR-18)] which has preserved bioactivity but does not bind to the IL18 binding protein decoy receptor. Both cytokines dramatically synergize to induce IFNγ release from mouse splenocytes, and, if systemically cotransferred to the liver, they mediate lethal toxicity. However, if given intratumorally to B16OVA tumor-bearing mice, the combination attains efficacy against the directly treated tumor and moderate tumor-delaying activity on distant noninjected lesions. Cotreatment was conducive to the presence of more activated CD8+ T cells in the treated and noninjected tumors. In keeping with these findings, the efficacy of treatment was contingent on the integrity of CD8+ T cells and cDC1 dendritic cells in the treated mice. Furthermore, efficacy of IL12 plus DR-18 local mRNA coinjection against distant concomitant tumors could be enhanced upon combination with anti-PD-1 mAb systemic treatment, thus defining a feasible synergistic immunotherapy strategy.


Assuntos
Interleucina-18 , Neoplasias , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Interleucina-12/metabolismo
6.
Int Rev Cell Mol Biol ; 371: 117-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964998

RESUMO

Ovarian cancer often spreads out of the ovary before a patient is diagnosed and is the deadliest gynecological malignancy. The aggressiveness of ovarian cancer is determined by the progression in the form of peritoneal carcinomatosis, a stage with a poor prognosis and an untreatable condition in most patients. One of the first tumor nests or the origin of metastasis in the peritoneal cavity is the omentum. The omentum contains immune aggregates, called milky spots, embedded in adipose tissue, which support tumor growth by various mechanisms, including immunosuppressive immune cells and metabolic functions. In this sense, the abundance of blood vessels, omental resident macrophages, and chemokines, among other factors, are known to promote invasiveness, proliferation and resistance to cancer therapies. As a result, surgical practice employed in advanced-stage ovarian cancer almost constantly includes omentectomy. Paradoxically, the omentum is considered the "abdominal policeman" that contributes to peritoneal immunity by capturing antigens and pathogens from the peritoneal cavity and promoting effective immune responses against microbes. Why immunosurveillance against the metastatic tumor does not take place in the omentum? Could omental immune responses be activated with immunotherapeutic interventions? The omentum has largely been ignored in cancer immunology and immunotherapy, and the potential translational implications of this in ovarian cancer are still unclear. Here, we focus on the dual role of the omentum in ovarian cancer: its role in antitumor immune responses versus its activities fostering cancer progression.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Fatores Imunológicos , Imunoterapia , Omento/patologia , Omento/cirurgia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/terapia
7.
Oncoimmunology ; 11(1): 2098657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859732

RESUMO

Recombinant-modified vaccinia virus Ankara (rMVA) is known to elicit potent antitumor immune responses in preclinical models due to its inherent ability to activate the innate immune system and the activation of adaptive responses mediated by the expression of tumor antigens and costimulus-providing molecules, such as CD40L and CD137L. Here, we evaluated different rMVA vectors in preclinical peritoneal carcinomatosis models (ID8.OVA-Vegf/GFP and MC38). We compared rMVA vectors expressing a tumor antigen (OVA or gp70) either alone or co-expressed with CD40L or/and CD137L. In tumor-free mice, the vector coding for the triple combination was only slightly superior, whereas, in tumor-bearing animals, we observed a synergistic induction of T lymphocytes specific against vector-encoded and non-encoded tumor-associated antigens. The enhanced activation of the immune response was associated with improved survival in mice with peritoneal carcinomatosis treated with a rMVA vector encoding both CD40L and CD137L. Thus, the triple transgene combination in vaccinia viral vectors represents a promising strategy for the treatment of peritoneal carcinomatosis.


Assuntos
Ligante 4-1BB/metabolismo , Neoplasias Peritoneais , Vaccinia , Animais , Ligante de CD40/genética , Imunidade , Camundongos , Neoplasias Peritoneais/terapia , Vírus Vaccinia/genética
8.
Int Rev Cell Mol Biol ; 369: 107-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777862

RESUMO

Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.


Assuntos
Citocinas , Neoplasias , Citocinas/metabolismo , Humanos , Imunoterapia , Microambiente Tumoral
9.
Int Rev Cell Mol Biol ; 370: 65-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35798507

RESUMO

Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia
10.
Pharmacol Ther ; 239: 108189, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35430292

RESUMO

Interleukin-12 is considered a potent agent to enhance antitumor immune responses. It belongs to a family of heterodimeric cytokines with key roles in the up-regulation and down-regulation of cellular immunity. Since its discovery, recombinant IL-12 was found to exert potent antitumor effects in rodent tumor models and was rapidly tested in the clinic with an unfavorable benefit/toxicity profile. Localized delivery of IL-12 dramatically improves the therapeutic index and this approach is being applied in the clinic based on in-vivo electroporation of naked plasmid DNA encoding IL-12, mRNA formulations, viral vectors and tumor-targeted fusion proteins. Other biotechnology strategies such as IL-12-engineered local adoptive cell therapy and pro-cytokines can also be used to improve results and broaden the therapeutic window. Combination strategies of such localized IL-12-based approaches with checkpoint inhibitors are yielding promising results both preclinically and in the early-phase clinical trials.


Assuntos
Interleucina-12 , Neoplasias , Humanos , Interleucina-12/genética , Imunoterapia/métodos , Vetores Genéticos , Imunoterapia Adotiva , Fatores Imunológicos , Neoplasias/terapia
11.
Expert Opin Drug Discov ; 17(1): 41-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496689

RESUMO

INTRODUCTION: Immune checkpoint inhibitors and adoptive T-cell therapy based on chimeric antigen receptors are the spearhead strategies to exploit the immune system to fight cancer. To take advantage of the full potential of the immune system, cancer immunotherapy must incorporate new biotechnologies such as mRNA technology that may synergize with already approved immunotherapies and act more effectively on immune targets. AREAS COVERED: This review describes the basics of mRNA biotechnology and provides insight into the recent advances in the use of mRNA for the local and systemic delivery of immunostimulatory antibodies, proinflammatory cytokines or for optimizing adoptive T-cell therapy. EXPERT OPINION: mRNA-based nanomedicines have great potential to expand the arsenal of immunotherapy tools due to their ability to simplify and accelerate drug development and their suitability for transient and local expression of immunostimulatory molecules, whose systemic and sustained expression would be toxic. The success of mRNA-based COVID-19 vaccines has highlighted the feasibility of this approach. Continuous advances in the delivery and construction of RNA-based vectors hold promise for improvements in clinical efficacy.


Assuntos
COVID-19 , Neoplasias , Vacinas contra COVID-19 , Descoberta de Drogas , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Mensageiro/genética , SARS-CoV-2
12.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824158

RESUMO

BACKGROUND: BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. METHODS: Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/ß receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. RESULTS: BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. CONCLUSION: Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Poli I-C/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Injeções Intralesionais , Camundongos
13.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321273

RESUMO

BACKGROUND: Modified vaccinia virus Ankara (MVA) are genetically engineered non-replicating viral vectors. Intratumoral administration of MVA induces a cyclic GMP-AMP synthase-mediated type I interferon (IFN) response and the production of high levels of the transgenes engineered into the viral genome such as tumor antigens to construct cancer vaccines. Although type I IFNs are essential for establishing CD8-mediated antitumor responses, this cytokine family may also give rise to immunosuppressive mechanisms. METHODS: In vitro assays were performed to evaluate the activity of simvastatin and atorvastatin on type I IFN signaling and on antigen presentation. Surface levels of IFN α/ß receptor 1, endocytosis of bovine serum albumin-fluorescein 5 (6)-isothiocyanate, signal transducer and activator of transcription (STAT) phosphorylation, and real-time PCR of IFN-stimulated genes were assessed in the murine fibroblast cell line L929. In vivo experiments were performed to characterize the effect of simvastatin on the MVA-induced innate immune response and on the antitumor effect of MVA-based antitumor vaccines in B16 melanoma expressing ovalbumin (OVA) and Lewis lung carcinoma (LLC)-OVA tumor models. RNAseq analysis, depleting monoclonal antibodies, and flow cytometry were used to evaluate the MVA-mediated immune response. RESULTS: In this work, we identified commonly prescribed statins as potent IFNα pharmacological inhibitors due to their ability to reduce surface expression levels of IFN-α/ß receptor 1 and to reduce clathrin-mediated endocytosis. Simvastatin and atorvastatin efficiently abrogated for 8 hours the transcriptomic response to IFNα and enhanced the number of dendritic cells presenting an OVA-derived peptide bound to major histocompatibility complex (MHC) class I. In vivo, intraperitoneal or intramuscular administration of simvastatin reduced the inflammatory response mediated by peritumoral administration of MVA and enhanced the antitumor activity of MVA encoding tumor-associated antigens. The synergistic antitumor effects critically depend on CD8+ cells, whereas they were markedly improved by depletion of CD4+ lymphocytes, T regulatory cells, or NK cells. Either MVA-OVA alone or combined with simvastatin augmented B cells, CD4+ lymphocytes, CD8+ lymphocytes, and tumor-specific CD8+ in the tumor-draining lymph nodes. However, only the treatment combination increased the numbers of these lymphocyte populations in the tumor microenvironment and in the spleen. CONCLUSION: In conclusion, blockade of IFNα functions by simvastatin markedly enhances lymphocyte infiltration and the antitumor activity of MVA, prompting a feasible drug repurposing.


Assuntos
Vacinas Anticâncer/uso terapêutico , Vetores Genéticos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Interferon Tipo I/antagonistas & inibidores , Vírus Vaccinia/efeitos dos fármacos , Animais , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos
14.
Cancers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669017

RESUMO

Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents.

15.
Mol Nutr Food Res ; 64(15): e1901213, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583974

RESUMO

SCOPE: Vitamin D3 is a critical molecule for the properly controlled activity of the immune system. In myeloid-derived cells, vitamin D3 induces the production of the antimicrobial and antitumor peptide cathelicidin. In this study, the mechanism of the entry of 25-hydroxycholecalciferol (25(OH)D) in myeloid-derived cells is explored. METHODS AND RESULTS: Here, a novel regulatory pathway of vitamin D3 biology is described. Using a polyclonal antibody, two different chemical inhibitors, and a high-density lipoprotein as a competing ligand, it is demonstrated here that the 25(OH)D signaling pathway in myeloid cells depends on scavenger receptor class B type I (SR-B1). This effect is observed in the THP-1 monocytic cell line and in human primary monocytes. SR-B1 blockade abrogates the cellular uptake of 25(OH)D leading to a general shut down of the gene transcription program modulated by 25(OH)D. The results obtained at the transcriptional level are confirmed at the protein and functional level for CD14 in the THP-1 cell line. CONCLUSION: In conclusion, SR-B1 plays a critical role in vitamin D3 biology, paving the way for novel therapeutic interventions.


Assuntos
Calcifediol/farmacocinética , Células Mieloides/metabolismo , Receptores Depuradores Classe B/metabolismo , Anticorpos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Calcifediol/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Mieloides/efeitos dos fármacos , Receptores Depuradores Classe B/imunologia , Células THP-1 , Catelicidinas
16.
Methods Enzymol ; 635: 185-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32122545

RESUMO

Recombinant adeno-associated viruses (rAAVs) are attractive tools for research in cancer immunotherapy. A single administration of an AAV vector in tumor mouse models induces a progressive increase in transgene expression which reaches a plateau 1 or 2 weeks after administration. The rAAV is then able to maintain the expression of the immunostimulatory transgene. Thus, the use of these vectors obviates the need for frequent administrations of the therapeutic protein to achieve the antitumor effect. The long-term expression of AAV vectors can be exploited for the evaluation of the antitumor activity of immune-enhancing proteins. Most preclinical studies have focused on the expression of cytokines and on the induction of immune responses elicited by tumor-associated antigens expressed by rAAVs. Notwithstanding, rAAVs may not be suitable for immunostimulatory proteins that require high and/or immediate expression. In this chapter, we review a feasible, reliable and detailed protocol to produce and purify AAV vectors as a tool for cancer immunotherapy strategies.


Assuntos
Dependovirus , Neoplasias , Animais , Dependovirus/genética , Vetores Genéticos/genética , Imunoterapia , Camundongos , Neoplasias/terapia , Transgenes
17.
Front Pharmacol ; 11: 591293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679386

RESUMO

Background: Targeting long-lasting insulins to the liver may improve metabolic alterations that are not corrected with current insulin replacement therapies. However, insulin is only able to promote lipogenesis but not to block gluconeogenesis in the insulin-resistant liver, exacerbating liver steatosis associated with diabetes. Methods: In order to overcome this limitation, we fused a single-chain insulin to apolipoprotein A-I, and we evaluated the pharmacokinetics and pharmacodynamics of this novel fusion protein in wild type mice and in db/db mice using both recombinant proteins and recombinant adenoassociated virus (AAV). Results: Here, we report that the fusion protein between single-chain insulin and apolipoprotein A-I prolonged the insulin half-life in circulation, and accumulated in the liver. We analyzed the long-term effect of these insulin fused to apolipoprotein A-I or insulin fused to albumin using AAVs in the db/db mouse model of diabetes, obesity, and liver steatosis. While AAV encoding insulin fused to albumin exacerbated liver steatosis in several mice, AAV encoding insulin fused to apolipoprotein A-I reduced liver steatosis. These results were confirmed upon daily subcutaneous administration of the recombinant insulin-apolipoprotein A-I fusion protein for six weeks. The reduced liver steatosis was associated with reduced body weight in mice treated with insulin fused to apolipoprotein A-I. Recombinant apolipoprotein A-I alone significantly reduces body weight and liver weight, indicating that the apolipoprotein A-I moiety is the main driver of these effects. Conclusion: The fusion protein of insulin and apolipoprotein A-I could be a promising insulin derivative for the treatment of diabetic patients with associated fatty liver disease.

18.
Front Immunol ; 11: 620283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33708194

RESUMO

Apolipoprotein A-I mimetic peptides are amphipathic alpha-helix peptides that display similar functions to apolipoprotein A-I. Preclinical and clinical studies have demonstrated the safety and efficacy of apolipoprotein A-I mimetic peptides in multiple indications associated with inflammatory processes. In this study, we evaluated the effect of the long-term expression of L37pA in the liver by an adeno-associated virus (AAV-L37pA) on the expression of an adeno-associated virus encoding interferon-alpha (AAV-IFNα). Long-term IFNα expression in the liver leads to lethal hematological toxicity one month after AAV administration. Concomitant administration of AAV-L37pA prevented the lethal toxicity since the IFNα expression was reduced one month after AAV administration. To identify the mechanism of action of L37pA, a genomic and proteomic analysis was performed 15 days after AAV administration when a similar level of IFNα and interferon-stimulated genes were observed in mice treated with AAV-IFNα alone and in mice treated with AAV-IFNα and AAV-L37pA. The coexpression of the apolipoprotein A-I mimetic peptide L37pA with IFNα modulated the gene expression program of IFNα, inducing a significant reduction in inflammatory pathways affecting pathogen-associated molecular patterns receptor, dendritic cells, NK cells and Th1 immune response. The proteomic analysis confirmed the impact of the L37pA activity on several inflammatory pathways and indicated an activation of LXR/RXR and PPPARα/γ nuclear receptors. Thus, long-term expression of L37pA induces an anti-inflammatory effect in the liver that allows silencing of IFNα expression mediated by an adeno-associated virus.


Assuntos
Antivirais/farmacologia , Apolipoproteína A-I/agonistas , Inflamação/prevenção & controle , Interferon-alfa/toxicidade , Fígado/metabolismo , Pancitopenia/prevenção & controle , Animais , Dependovirus/genética , Feminino , Regulação Viral da Expressão Gênica , Inativação Gênica , Vetores Genéticos/genética , Inflamação/etiologia , Interferon-alfa/biossíntese , Interferon-alfa/sangue , Interferon-alfa/genética , Lipoproteínas/sangue , Fígado/patologia , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , PPAR gama/metabolismo , Pancitopenia/etiologia , Proteoma , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Receptores X de Retinoides/metabolismo , Organismos Livres de Patógenos Específicos , Transgenes
19.
J Immunol ; 203(3): 696-704, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209101

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease with no curative treatment. The immune regulatory properties of type I IFNs have led to the approval of IFN-ß for the treatment of relapsing-remitting MS. However, there is still an unmet need to improve the tolerability and efficacy of this therapy. In this work, we evaluated the sustained delivery of IFN-α1, either alone or fused to apolipoprotein A-1 by means of an adeno-associated viral (AAV) system in the mouse model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. These in vivo experiments demonstrated the prophylactic and therapeutic efficacy of the AAV-IFN-α or AAV-IFN-α fused to apolipoprotein A-1 vectors in experimental autoimmune encephalomyelitis, even at low doses devoid of hematological or neurologic toxicity. The sustained delivery of such low-dose IFN-α resulted in immunomodulatory effects, consisting of proinflammatory monocyte and T regulatory cell expansion. Moreover, encephalitogenic T lymphocytes from IFN-α-treated mice re-exposed to the myelin oligodendrocyte glycoprotein peptide in vitro showed a reduced proliferative response and cytokine (IL-17A and IFN-γ) production, in addition to upregulation of immunosuppressive molecules, such as IL-10, IDO, or PD-1. In conclusion, the results of the present work support the potential of sustained delivery of low-dose IFN-α for the treatment of MS and likely other T cell-dependent chronic autoimmune disorders.


Assuntos
Apolipoproteína A-I/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interferon-alfa/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-17/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Receptor de Morte Celular Programada 1/biossíntese , Linfócitos T Reguladores/citologia
20.
Oncoimmunology ; 8(7): 1599636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143521

RESUMO

Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNÉ£ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...